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ABSTRACT 
We propose a method for segmentation of pitch tracks for melody 
detection in polyphonic musical signals. This is an important issue 
for melody-based music information retrieval, as well as melody 
transcription. Past work in the field addressed especially the issue 
of extracting melodic pitch lines, without explicit definition of 
notes. Thus, in this work, we propose a two-stage segmentation of 
pitch tracks for the determination of musical notes. In the first 
stage, frequency-based segmentation is conducted with recourse to 
frequency variations in pitch tracks. In the second phase, salience-
based segmentation is performed in order to split consecutive notes 
with equal value, using pitch salience minima and note onsets. 

1. INTRODUCTION 

Query-by-humming (QBH) is a particularly intuitive way of 
searching for a musical piece, since melody humming is a natural 
habit of humans. This is an important research topic in an emergent 
and promising field called Music Information Retrieval (MIR). 
Several techniques have been proposed in order to attain that goal, 
e.g., [1]. However, presently, this work is being carried out only in 
the MIDI domain, which places important usability questions. Que-
rying “real-world” polyphonic recorded musical pieces requires a 
melody representation of the songs, which is a complex task since 
there can be many types of instruments playing at the same time, 
whose spectra interfere severely with each other.  

Only little work has been conducted in the problem of melody 
detection in polyphonic audio, [2, 3, 5, 6]. Additionally, most of the 
work is only concerned with the extraction of melodic pitch lines. In 
our approach, we propose a multi-stage strategy for melody detec-
tion, with explicit note determination. An overview of the system is 
given in Section 2. Segmentation of pitch tracks, the main topic of 
this paper, is the subject of Section 3. In Section 4, evaluation re-
sults are discussed. We finish with some conclusions. 

2. MELODY DETECTION METHOD: OVERVIEW 
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Fig. 1. Overview of the melody detection system. 

 
Our melody detection algorithm comprises five modules, as il-

lustrated in Fig. 1. The general strategy was described previously, 
e.g., [6], and, thus, only a brief presentation is provided here.  

In the Multi-Pitch Detection (MPD) stage, the objective is to 
capture a set of pitch candidates, which constitute the basis of possi-
ble future notes. We use an auditory model for pitch detection. 

Multi-Pitch Trajectory Construction (MPTC), in the second 
stage, aims to create a set of pitch tracks, formed by connecting 
consecutive pitch candidates with similar frequency values. The 
general idea is to find regions of stable pitches, which indicate the 
presence of musical notes. 

The trajectories that result from the MPTC stage may contain 
more than one note and, therefore, must be segmented. This is the 
main topic of this paper and is described in the following section. 

In the fourth stage, irrelevant note candidates are eliminated, 
based on their saliences, durations and on the analysis of harmonic 
relations. We make use of perceptual rules of sound organization, 
namely “harmonicity” and “common fate”, where common fre-
quency and amplitude modulation are exploited.  

In the last stage, our goal is to obtain a final set of notes com-
prising the melody of the song under analysis. We base our strategy 
on two assumptions that we designate as the “salience principle” 
and the “melodic smoothness principle”. In the salience principle, 
we take advantage of the fact that the main melodic line often 
stands out in the mixture. In the smoothness principle, we use the 
fact that small frequency intervals favour melodic coherence, since 
smaller steps in pitch hang together better.  

3. SEGMENTATION OF PITCH TRACKS 

As referred above, the trajectories obtained in the MPTC stage may 
contain more than one note and, so, must be segmented in order to 
explicitly obtain musical notes. Both frequency and pitch salience 
segmentation are carried out. 
 
3.1 Frequency Segmentation 
In frequency segmentation, the goal is to split notes with different 
values that may be present in the same trajectory, taking into con-
sideration the presence of glissandos and frequency modulation.  

The main issue with frequency segmentation is to approximate 
a frequency curve by piecewise-constant functions (PCFs), as a 
basis for track segmentation. However, this is not trivial, since mu-
sical notes, besides containing regions of approximately stable fre-
quency, also contain regions of transition, where frequency evolves 
until (pseudo-)stability, e.g., glissando. Moreover, frequency modu-
lation can occur, and so no stable frequency exists. Yet, an average 
stable fundamental frequency can be determined. 

Our problem, could, thus, be characterized as one of finding a 
set of PCFs that best approximate a frequency curve. As unknown 
variables we have the number of functions, their respective parame-
ters (only bias, for constant functions), and start and end points.  



We have investigated some approaches for piecewise-constant 
or linear function approximation. However, the algorithms that 
minimize the global approximation error either require an analytic 
expression of the curve or need to test different values for the num-
ber of functions, e.g., [7]. In this way, we propose an algorithm for 
approximation of frequency curves from musical notes by PCFs, 
taking advantage of some peculiarities of musical signals.  

The algorithm starts by filtering the frequency curves of all 
tracks, in order to fill in missing values, as a result of the MPTC 
algorithm. This is carried out by a simple zero-order-hold (ZOH), as 
in (1). There, f[k] is the frequency value of the kth frame in the cur-
rent track, in a total of N frames, and fF[k] denotes the filtered curve.  
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After that, the filtered frequency curve is approximated by 
PCFs through the quantisation of each frequency value to the cor-
responding MIDI note number, according to (2). There, fMIDI[k] 
represents the MIDI value corresponding to frequency fF[k] and Fref 
is the frequency of MIDI note number zero. 
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Then, PCFs can be directly defined as sequences of constant 
MIDI values. Generally, it comes (3), where, PCi represents the ith 
PCF, defined in the domain Di and characterized by a sequence of 
constant MIDI values equal to ci. Also, the special case of singleton 
domains is allowed. The total number of PCFs is denoted by nPC.  
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However, due to frequency variations resulting from modula-
tion, as well as frequency errors from the MPD stage, fluctuations 
of MIDI values may be present. Also, glissandos should be kept 
within one single function. Therefore, fMIDI[k] must be filtered, so 
as to allow for a more robust determination of PCFs that may rep-
resent musical notes. Three stages of filtering are applied in order 
to appropriately deal with too short note candidates. Hence, PCFs 
whose length (i.e., the number of elements in the domain) is below 
the minNLen parameter (22 frames ≈ 120ms) are dealt with. 

In the first filtering stage, the general idea is that short se-
quences delimited by long sequences with the same note number, 
e.g., {70,…,70,71,71,70,70,71,70…,70}, are interpreted as possible 
frequency modulation regions. So, they should be filtered, keeping 
the value of the delimiting sequence (70 in this example). Formally, 
it comes (4), where L(PCi) denotes the length of the ith PCF. Thus, 
the support of some PCFs is enlarged, while others are eliminated. 

( ){ }

{ }

( )
{ }

{ }

1,2, , :

2, ,

1

1

1, ,

,

: and

if

1: , ,

2 : , ,

ii nPC L PC minNoteLen

m im i nPC

m

j
j i

i i m

new
j j m ij i nPC

c c

L PC minNLen

D a b

PC PC nPC nPC m i

∈ ≥

∈ +

−

= +

+ −∈ +

∀

∃ = 
 
  ⇒

< 
 
 

=

∀ = = − +

∑  (4) 

However, some short PCFs are still kept. Therefore, a similar 
filtering is applied, much in the same way as in (4), with the differ-
ence that no long sequences need to be found. 

At this moment, the only short PCFs present correspond to 

glissandos. Hence, PCFs forming note transitions are merged. For-
mally, it comes (5). There, LN contains LN1, i.e., the index of the 
first long PCF in a transition, and m denotes the index where the 
glissando stops. Thus, m corresponds either to LN1 or to the last 
PCF, if no long notes are found. In the former, the resulting PCF 
receives the value of the long PCF, since its length gives strong 
evidence that the transition finishes there. In the latter, the final 
MIDI values may have resulted from frequency drifting in the offset 
and, so, the resulting PCF receives the value of the longest PCF in 
the transition. 
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Finally, the precise timings for each PCF must be adjusted. In 
fact, as a result of MIDI quantisation, there is a delay in the moment 
where transitions start, since the frequencies at the beginning of a 
transition may be converted to the MIDI value of the first note, in-
stead of the next one. In this way, we define the start of a transition 
as the point of maximum derivative of f[k] after it starts to move 
towards the next note, i.e., the point of maximum derivative after 
the last occurrence of the median value of f[k] in Di, mdi. It then 

comes (6), where [ ]f k represents the derivative of f[k], lasti stands 
for the last index of the ith PCF where mdi occurs, and diri denotes 
the direction of frequency movement from PCF i to  i+1.  
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Fig. 2. Illustration of frequency segmentation. 

 
The algorithm for frequency segmentation is illustrated in Fig. 

2, for a pitch track from The Mambo King’s “Bella Maria de Mi 
Alma”. There, the constant lines represent the obtained PCFs. 



3.2 Pitch Salience Segmentation 
As for pitch salience segmentation, our goal is to separate consecu-
tive notes with the same value, which the MPTC algorithm may 
have interpreted as forming one single note. This requires segmenta-
tion based on pitch salience minima, which mark the limits of each 
note. In fact, the salience value depends on the evidence of pitch for 
that particular frequency, which is lower at the onsets and offsets. 
Consequently, the envelope of the salience curve is similar to an 
amplitude envelope: it grows at the note onset, has then a more 
steady region and decreases at the offset. In this way, notes can be 
segmented by detecting clear minima in the pitch salience curve. 

As in the frequency segmentation stage, the algorithm starts by 
filtering the salience curve with a ZOH, due to missing values. Ad-
ditionally, as the salience curve may be somewhat noisy, we add a 
low-pass filtering stage in order to smooth it. A zero-phase Black-
man-sinc filter [9] is used, as in (7), where s[k] is the kth pitch sali-
ence value in the current track, ‘*’ denotes discrete convolution, 
b[n] represents the Blackman window [9], centred at the origin,  and 
sF[k] is the smoothed curve. The parameters fc = 100Hz and W = 9 
stand for the cutoff frequency and the length of the filter kernel, 
respectively. K is chosen so as to provide unity filter gain at DC. 
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 After that, sF[k] is normalized into the [0, 1] interval, according 
to (8), in order to allow for a uniform valley search for the whole set 
of tracks. There, sN[k] denotes the normalized curve. 

( )
( ) ( )

min

max min

F F
N

F F

s k s k
s k

s k s k

−      =   −      
 (8) 

Then, we iteratively look for all clear local minima and 
maxima of sN[k]. First, all local minima and maxima are found, as in 
(9). There, the set LMin(i) contains all local minima found in the 
curve at iteration i. We also deal with plateaus, where the index of 
the minimum will correspond to the middle point of the plateau. Eq. 
(9) is slightly changed for the border frames in the interval I(i), so 
that only one-side comparisons are performed. As for local maxima, 
the LMax(i) set is obtained likewise, by changing the relational op-
erator. In the first iteration of the algorithm, I(0)={1,2,…,N}, i.e., the 
first interval contains all the frames in the track. 
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 Clear minima are then recursively looked for. We start by find-
ing the global minimum of sN[k], gmin

(i), as in (10). We also define 
kmin

(i) as the index corresponding to gmin
(i), at iteration i.   
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Next, LMax(i) is divided into two subsets, one to the left of 
kmin

(i), LMaxleft
(i), and another to its right, LMaxright

(i). The global 
maxima for each subset, gmax-left and gmax-right, respectively, are then 
calculated. Formally, it comes (11) and (12), for the left subset. The 
procedure is analogous for the right subset. 

( ) ( ) ( ){ }:i i i
left minLMax k LMax k k= ∈ <  (11) 

( )
( ) { }max
i

left

i
max-left N

k LMax

g s k
∈

=     (12) 

 Then, kmin
(i) is selected as a clear minimum if its prominence, 

i.e., the minimum distance from gmin
(i) to both the left and right 

global maxima, is above minPvd. Finally, LMin(i) is also divided 
into two new intervals, to the left and right of kmin

(i), in the same way 
as LMax(i) was. Eqs. (9) to (12) are repeated recursively for each 
new interval, I(⋅), until all clear minima are found. Formally, we 
define the set of indexes corresponding to clear minima, CMin, (13):  
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Here, vmk is the valley magnitude (i.e., the minimum distance be-
tween a valley and its adjacent peaks) of the kth global valley found 
in the successive intervals I(i) and nI is the total number of iterations.  

However, this procedure lacks robustness, since the best value 
for minPvd varies from track to track, along different song excerpts. 
In fact, a unique value for that parameter leads to both missing and 
extra segmentation points. Also, it is sometimes difficult to distin-
guish between note endings and amplitude modulation in some 
performances. Thus, we improved the method by performing onset 
detection and matching the obtained onsets with the initial candidate 
segmentation points. In this way, we specified a low value for 
minPvd, namely 0.1, so that missing segmentation points are 
unlikely. Consequently, extra false segmentation points appear, 
which are eliminated later on via onset matching.  

Fig. 3 illustrates our prominent valley detection algorithm for a 
pitch track of Claudio Roditti’s “Rua Dona Margarida”, where ‘o’ 
represents correct segmentation candidates and ‘*’ denotes extra 
segmentation points.  
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Fig. 3. Pitch salience segmentation: candidate points. 

 
As for onset detection, we based ourselves on [4] and [8], 

where onsets are detected following a band-wise processing ap-
proach. A bank of nearly critical band filters is chosen, which covers 
the frequencies from 44Hz to the Nyquist frequency, in a total of 18 
filters. Elliptic filters are employed, so as to guarantee a maximally 
sharp cutoff in the transition band. Since it is important to maintain 
the temporal properties of the signal in each band, zero-phase should 
be a requirement. Thus, we perform bi-directional filtering [9], (14): 
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Here, ( )i
BS z , ( )iH z and ( )S z , represent, respectively, the filtered 

output and the filter transfer function at band i, and the original sig-
nal, all in the Z-domain. Due to bi-directional filtering, we specified 
filter parameters in terms of the desired transfer function: 3rd order 
filters, with 1.5dB ripple in the pass-band and 20dB of rejection in 
the stop-band. The design parameters are approximately doubled as 
a result of bi-directional filtering, e.g., 6th order filters result. As for 
the cutoff frequencies, the lowest three filters are one-octave band-
pass filters, whereas the remaining are third-octave band-pass filters, 
with no overlapping. Bi-directional filtering slightly changes the 
cutoff frequencies, which was not problematic in this case. 

After filtering, onset components are computed at each band. 
First, we extract the amplitude envelope of each output via rectify-
and-smooth [8]. In order to ease calculations, the output of each 
band is decimated to 200 Hz. Then, the outputs are full-wave recti-
fied and smoothed with a 100ms zero-phase half-Hanning window 
[8], w[n], of corresponding width W/2, as in (15).  
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Then, onset components are detected in each band by finding 
the points of maximum slope in the smoothed curves. In other 
words, we look for clear maxima in the derivatives of the smoothed 
outputs si

H[k]. This is accomplished in a similar way to eqs. (8) to 
(13) above, except that now we look for peaks instead of valleys. 
Since some onset candidates may be very close, we delete the ones 
that are closer than 50ms to a more intense component [4].  

Next, we merge the onset components found at each band. 
These are all sorted in time order and combined by summing the 
magnitudes of all onsets in a 50ms’ neighbourhood of a given can-
didate, as in (16). There, OM[j] and OI[j] denote, respectively, the 
magnitude and index of the jth onset component, in a total of nO 
components, and ∆t represents the time interval (seconds) corre-
sponding to a given number of frames. Finally, onset components 
closer than 50ms to a more intense component are again eliminated. 
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 After onset detection, our goal is to validate the candidate seg-
mentation points obtained above. First, all clear salience minima are 
kept as definitive segmentation points, according to (17), where 
VCMin denotes the set of clear salience minima, i.e., valleys whose 
prominence is above clearValley = 0.4. 

{ }: kVCMin k CMin vm clearValley= ∈ ≥  (17) 

Then, for all unclear valleys, onset matching is performed. 
Hence, if a candidate valley has a clear onset closer than 50ms, that 
valley is kept as a segmentation point, as in (18). There, clearOn = 
0.4 is the threshold for definition of clear onsets and VUMin denotes 
the set of unclear salience minima. Finally, the set of all segmenta-
tion points is defined as VCMin ∪  VUMin. 
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Another advantage of onset detection is that note beginnings 
are adjusted to the found onsets, for a maximum deviation of 50ms. 

The described procedure for pitch salience segmentation is il-
lustrated in Fig. 4, for an excerpt from Claudio Roditti’s “Rua Dona 
Margarida”. The grey horizontal lines represent the original anno-
tated notes, whereas the black lines denote the extracted notes. The 
small grey vertical lines stand for the correct segmentation points 
and the black vertical ones are the obtained results of our algorithm. 
It can be seen that there is an almost perfect match in this excerpt. 
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Fig. 4. Illustration of pitch salience segmentation. 

4. VALIDATION EXPERIMENTS 

In order to evaluate the melody detection system, and particularly 
the segmentation algorithm, we collected excerpts of about 6 sec-

onds from 12 songs, encompassing several different genres (pop, 
rock, jazz, classical, latin, …) [6]. The selected songs contain a 
solo (either vocal or instrumental) and accompaniment parts (gui-
tar, bass, percussion, other vocals, etc.). Also, the selected excerpts 
contain glissando and frequency modulated notes, as well as con-
secutive notes with the same MIDI value. 

The results for frequency segmentation were very good. All 
glissandos and frequency-modulated notes were correctly captured 
(e.g., Fig. 2), except for a short ornamental note found in one ex-
cerpt from Battlefield Band’s “Snow on the Hills”. As for the tim-
ings, they matched very well our manually annotated database. Most 
deviations were smaller than 20ms, which may even have resulted 
from annotation errors. Only a few higher deviations occurred in 
tracks with transitions zones with many missing frequency values. 

As for pitch salience segmentation, the results were also gener-
ally good (e.g., Figs. 3 and 4). However, some tracks were more 
problematic, as a result of missing and extra onsets in some excerpts 
(e.g., Enya’s “Only Time”, with a lot of reverb). Onset detection in 
polyphonic recordings is itself a complex task, and so salience seg-
mentation may be improved if onset detection algorithms become 
more reliable.  
 As a final word, our melody extraction system obtained 
87.52% average pitch detection accuracy for the melody notes. 
Some extra notes are still present, a problem that will be addressed 
in the future. Yet, the obtained results are encouraging.  

5. CONCLUSIONS 

We proposed a method for segmentation of pitch tracks as a re-
quirement for melody detection in polyphonic musical signals. The 
obtained results were very good, especially for frequency segmen-
tation. Pitch salience segmentation may be improved as soon as 
more robust onset detection algorithms become available. 
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